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Singular Continuous Spectrum on a 
Cantor Set of Zero Lebesgue Measure 
for the Fibonacci Hamiltonian 
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It is rigorously proven that the spectrum of the tight-binding Fibonacci 
Hamiltonian,  Hm. = 6 . . . .  1 + 6 . . . .  t + 6m.#([(n + 1)c~] - [n~])  where c~ = 
( x / 5 - 1 ) / 2  and [ . ]  means integer part, is a Cantor  set of zero Lebesgue 
measure for all real nonzero #, and the spectral measures are purely singular 
continuous. This follows from a recent result by Kotani,  coupled with the 
vanishing of the Lyapunov exponent in the spectrum. 

KEY WORDS:  Schr6dinger equation; Cantor  spectrum; singular continuity; 
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In the present paper we settle a long-standing problem about the spectrum 
of a one-dimensional discrete Schr6dinger operator, called the Fibonacci 
Hamiltonian. The operator is defined on 12(2~) by 

(H~p)(n) = t~(n + 1) + ~(n - 1) + #v(n) ~b(n) (1) 

where # # 0 is a real number, 

v(n) = [(n + 1)c~] - [n~] (2) 

with c~ = (x/5 - 1)/2 and [- ] meaning integer part. The spectral problem of 
H was addressed for the first time independently by Kohmoto et alJ 1) and 
by Ostlund et al. ~2) Nonrigorous but physically appealing arguments, sup- 
ported by numerical work, led these authors to suggest that the spectrum 
of H is a Cantor set of zero Lebesgue measure. In a subsequent work, 

1 Universit6 de Lausanne,  Institut de Physique Thdorique, CH-1015 Lausanne, Switzerland. 
z On  leave from the Central Research Institute for Physics, Budapest, Hungary.  

525 

0022-4715/89/0800-0525506.00/0 �9 1989 Plenum PuNishing Corporation 



526 Si l t6  

Kohmoto and Oono (3) found further arguments in favor of a Cantor 
spectrum, and they also conjectured that the spectral measures should be 
purely singular continuous for any nonvanishing potential strength Ix. Since 
then, these conjectures about the Cantor spectrum and singular continuity 
have been widely accepted and propagated in the physical literature as 
facts, although no rigorous proof has been given. Apparently the first 
rigorous result was obtained by Casdagli. (4) The main tool of refs. 1-3 was 
to pass from the Schr6dinger equation H0 = E0 to the study of a dynami- 
cal map (r ,_  1, Zn, T, + 1) ~ (rn, % + 1, rn + 2) in R3. Here r ,  is the trace of 
the transfer matrix M,  defined by 

qs(F, + 1)'] (qs(1)~ 
~s(r,) ] = M "  \ 0 ( 0 ) )  

where Fn is the n th Fibonacci number. Casdagli proved that 

B = {Ee ~l {r.(E)} is a bounded sequence} 

(3) 

(4) 

is a Cantor set of zero Lebesgue measure if IIx]/> 16. The threshold was 
improved to IIx] ~>4 by Silt6 (5) (without obtaining that the Lebesgue 
measure ]B] = 0), who also showed that B coincides with the spectrum of 
H and that the spectrum is purely continuous for all #. As a combination 
of the findings in refs. 4 and 5, one then gets: The spectrum of H is Cantor 
set of zero Lebesgue measure and it is purely singular continuous if 
I/x[ >~ 16. A new development was reached in a recent work by Kotani, (6) 
who studies operators of the type (1) (Jacobi matrices) with potentials 
taking values from a finite set. Let 0 ~< 0 < 1, and define an operator H(O) 
of the type (1), but v(n) replaced by 

(5) vo(n)= [ ( n +  1 ) ~ + 0 ] -  [nc~+0] 

Thus, H(0 )=  H. Then, as a consequence of Kotani's result, one has the 
following. 

T h e o r e m  (Kotani). For almost all 0, H(O) has no absolutely 
continuous spectrum. 

This theorem still cannot exclude that for a given fixed 0, e.g., for 
0 = 0, there is an absolutely continuous part in the spectrum. In fact, the 
theorem leaves the possibility for an exceptional set of 0 of zero Lebesgue 
measure, to which 0 may belong. That this is not the case will be proved. 

T h e o r e m .  For any # r  and any 0, the spectrum of H(O) is a 
Cantor set of zero Lebesgue measure. For all 0, H(O) has no absolutely 
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continuous spectrum and the spectrum of H = H ( 0 )  is purely singular 
continuous. 

Remarks. 

(i) The absence of absolutely continuous spectrum for H(O) and the 
singular continuity of the spectral measures of H(0) follow simply from 
]spec(H(0))] = 0  and the continuity of the spectrum of H(0), proved in 
ref. 5. Indeed, a set of zero Lebesgue measure cannot carry any measure 
which is absolutely continuous with respect to the Lebesgue one. Notice, 
however, that for 0 r 0 the spectrum of H(O) may not be purely continuous 
and thus H(O) may have spectral measures composed of singular con- 
tinuous and pure point parts. Isolated eigenvalues are, however, excluded. 

(ii) Claiming something about the set spec(H(0)) for all 0 is a 
pleonasm, for spec(H(0)) is independent of 0, so is equal to spec(H). Even 
more, the 0 independence of the integrated density of states (IDS, see ref. 7) 
holds true, 

ko(E) = k(E) (6) 

where k(E) is the IDS of H. 

In the proof of the above theorem, we need the equality (6), which is 
a result by Avron and Simon, (7) valid for almost periodic potentials. As a 
matter of fact, {v(n)}~= _~ is not a uniformly almost periodic sequence, 
since sup, ]v(n + m)-v(n)r = 1 for all m r 0, but it is almost periodic in a 
generalized sense (for definitions, see Besicovitch(8)): It admits a Fourier 
series of the form 

v(n)~ ~, a~exp{i2kn } (7) 
k - -  - - c o  

with ~ la/~]2 < o0. Indeed, define 

o~ 1 

f~(x) = ~ + k~ 1= ~ {sin 2~zke(x + 1) - sin 2r~kc~x} (8) 

The series f~(x) is convergent for any real e and x, and 

L(x)= [(x+ t )~ ] -  [x~] (9) 

provided that neither xct nor xc~ + ~ is an integer. Therefore, if c~ is 
irrational, then 

[(n + 1)~3 - End] = A ( n )  (10) 
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unless n = 0 and n = -1 .  The almost periodicity of the sequence (2) can be 
expressed in another way: One sees easily that for any real 0, Vo is the 
pointwise limit of translates of v, and, vice versa, v is the pointwise limit of 
translates of Vo. The set of sequences {v0[0 ~< 0 < 1 } is called the hull of v; 
according to what we said above, it can be obtained from any of its 
elements by translations and taking limits of translates. This is the property 
leading to Eq. (6). We remark that Kotani's theorem and the above 
properties of almost periodicity are valid for any irrational ~. In the present 

paper, we prove our theorem only for ~ = (v/5 - 1)/2. The forthcoming 
discussion is limited to this case. Generalization will be given elsewhere. 

Apart from the result of Kotani, a new ingredient comes from the 
knowledge of the Lyapunov exponent. The Lyapunov exponent is defined 
as 

7(E, 0 )=  lira 1 inl ~ o~ ~-~ In max{ [O(n)[" 10(0)12+[0(1)12=1} (11) 

provided that the limit exists; if this is the case, then 

7(E, 0 )=  lim l l n  IlZo(n)l] (12) 
n ~ o o  n 

where To(n) is the transfer matrix for the Schr6dinger equation 
H(O)~ = E~ given by 

( ~(n + 1)) = To(n)(~(1)'] (13) 
~(n) \~9(0) ] 

We will write T instead of To. 

P r o p o s i t i o n .  For E e spec(H), y(E, 0) exists and is equal to zero. 

Proof. Due to the symmetry of the potential, v ( - n ) = v ( n - 1 )  for 
n >~ 2, it suffices to investigate the limit n--, oo. As a first step, we prove: 
For E~spec(H),  7 , = ( 1 / F , ) l n  ]]M,]I tends to zero as n ~  oo. From the 
recurrence equation ~1) 

M ~ + I =  m ,  1M, (14) 

using det M,  = 1, we obtain 

M,+I  = z~M, 1-Mnl2 (15) 

It is convenient to work with a norm such that HA-lit = IIA]I if detA = 1 
(take, e.g., the spectral norm). Then 

1 ~< [1m.+a[ t ~< [z.I ItM._~H + []m. 211 (16) 
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As it was shown in ref. 5, spec(H)=  B, and 

Ir.(E)l < 2 +  t~1 (17) 

whenever {r~(E)} is a bounded sequence. Thus, there exists some co< oo 
independent of E and of n, such that 

1 ~< ][M~(E)[I < c o 

if E E spec(H). Finally, we get 

n 
0 ~< 7, ~--~ log co ~ 0 as n ~ o o  (18) 

Let now x be any positive integer. There is a unique set of integers {nk}~C=o 
such that nk+ ~ - nk ~> 2 and 

K 

F~K~<x= 2 F . k = L ~ + l ( x ) < L x + l  
k - - 0  

Choose x ) 2 ,  x 4 = Fn for any n. Then (s) 

v(F,K + l(x) ) = v(l(x) ) (19) 

and 

T(x)  = ~ ( l ( x ) )  T(F.~) . . . . .  T(Fno) T ( F . 1 ) "  r(FnK) (20) 

Noticing that T ( F ~ ) =  M,,,  we obtain 

0~<ln IIT(x)H ~< ~ FnkTnk (21) 
k>_-0 

If E e  spec(H), we can use the upper bound (18) to get 

K 

0 ~ l n  IIT(x)lt ~<(logco) ~ nk<~cl( lnx)  2 (22) 
k=o 

which proves the assertion. | 

Observe that (11) and (22) imply that for E e  spec(H), 

I~'(x)l <~ c2 Ix[ c~ '~ Ixl as Ixl -+ oo (23) 

It is expected that (23) can be replaced by some polynomial bound. If 
0 #0 ,  a recurrence relation like (14) does not exist and we cannot prove 
that 7(E, 0 ) =  0 in the spectrum. 
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Below we summarize several general results concerning the Lyapunov 
exponent and valid for the present system. 

1. For fixed E, ~(E, 0) exists for a.e. 0 and is independent of 0. ~9~ This 
quantity is denoted by 7(E). 

2. There is a formula ~~ which relates the Lyapunov exponent to 
the IDS. With ~(E) defined above, this reads 

7(E) = I  In IE-E'I  dk(E') (24) 

The rigorous proof is due to Avron and Simon ~7) and Craig and Simon. ~2) 
Craig and Simon proved that this equation is valid for all E. In the earlier 
work, ~7) where (24) was derived only for a.e. E, Avron and Simon show the 
following result (Lemma 4.3): 

Let 

7(n; E, O) =-1 In II To(n)ll (25) 
n 

Then, for any fixed 0, y(n; E, 0) tends to ~ln ]E-E'I  dk(E') in L2(dE). 

With (24) this gives, for all 0, 

flT(n;E;O) -7(E)L2dE~O as n ---r ~ (26) 

3. Kotani ~13~ (for the Schr6dinger equation on ~) and Simon ~ (for 
the discrete case) obtained the following result. 

If 7(E)= 0 on a subset A of ~ with positive Lebesgue measure, then 
for a.e. 0, the absolutely continuous spectrum of H(O) is nonempty in A. 

Proof of the Theorem. It is sufficient to show that the spectrum of 
H has zero Lebesgue measure. This and the continuity of the spectrum of 
H imply that spec(H) is a Cantor set. 

From the Proposition, 

~(n; E, 0) --* 0 if E~ spec(H) 

From Eq. (26) we find that 7(E) = 0 on A = spec(H)\S, where S is a set of 
zero Lebesgue measure. Thus, if [spec(H)[>0, then lAB>0, and by 
Kotani-Simon, H(O) has a nonvanishing absolutely continuous spectrum 
for a.e. 0. This contradicts the theorem of Kotani, so that Ispec(H)] = 0. i 
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NOTE ADDED IN PROOF 

The results of ref. 5 and of the present paper have recently been 
extended to potentials (2) with any irrational e.(15) 
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